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ABSTRACT 

For G = PGL2(Qp)  x PGL2(Q~) we s t u d y  the  closures of  orbits  unde r  the  

m a x i m a l  split  C a r t a n  subgroup  of G in homogeneous  spaces  F \ G .  We show 

tha t  if a closure of  an  orbit  conta ins  a closed orbit  t hen  the  orbit  is e i ther  

dense  or closed. We show the  relat ion of this  to divisibility proper t ies  of  

integral  qua te rn ions  and  o ther  lattices. 

In a recent series of papers M. Rather (see [Ra]) proved the Raghunathan 

conjecture: If G is a real Lie group, F < G a lattice and H < G a subgroup 

generated by unipotent elements then for every Fx E G we have F x H  = F x F  for 

some closed group F containing H. G.A. Margulis has conjectured in his ICM 

address, [Ma], that  if A is the maximal R-split Cartan subgroup of a semisimple 

real Lie group of rank _> 2, with no compact factors, and if Fx E F \ G  has a 

relatively compact A orbit then F x A  = F x F  for some closed subgroup F < G (one 

has to put some conditions on F). A similar conjecture was made independently 

by H. Furstenberg. 

Here we consider a special case of the analogous conjecture for groups over 

p-adic fields. Namely, we consider the case of the group 

G = PGL2(Qp) × PGL2(Qe) 
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where p,g are two fixed primes, A = { ( ( * * ) ,  ( * * ) )  E G} and F < G an ir- 

reducible lattice (necessarily uniform). Then the conjecture has the following 

simple form: 

CONJECTURE 1: For G, F, A as above every A orbit, FxA is either dosed or 

dense. 

We prove a weaker result which says that non-closed orbits are dense if they 

satisfy some more conditions. The proof also gives some arithmetical corollaries 

concerning divisibility properties in F. We show that a strengthening of the 

arithmetical consequences is actually equivalent to Conjecture 1. 

THEOREM 1: Let p,g be two primes G = PGL2(Qp) x PGL2(Q~), F < G an 

irreducible (uniform) lattice, A = { ( ( * * ) ,  ( * * ) )  E G} a maximal split Cartan 

subgroup of G. Let x E F\G. Assume that xA contains a compact A orbit then 

xA is either dense or compact. 

There is no loss in generality in assuming that  F is torsion free. By a result 

of A. Selberg [Sel] F contains a torsion free sublattice of finite index F' and the 

assertion for F follows from the one for F'. Henceforth we shall assume that  F is 

torsion free. 

The main tool we will use for proving this theorem is a "symbolic description" 

of the system (F\G,  A). In [Moll we showed that a system (F'\G', A') where G' 

is a semisimple Chevalley group over a p-adic field, F I < G I a lattice and A ~ < G 

a split Caftan subgroup of G ~, is a compact group extension of a certain subshift 

of finite type. In the present case we obtain a two dimensional subshift of finite 

type (fl, Z2). Let M < A be the maximal compact subgroup of A. Note that  

M -  { ( ( r  r - ' ) ,  (s s - ' ) ) [ r  • Z•, s • Z~}, and that M \ A  ~ Z 2. There exists a 

continuous map &: F \ G  --* ~ which induces a homeomorphism ~: F\G/M ~ 

conjugating the action of M \ A  ~_ Z 2 on F\G/M with Z 2 action on ~2. Since M is 

a compact subgroup it follows that x'-'A = &-l(&(x)Z2).  Hence in order to study 

the closures of A orbits in F \ G  it is enough to study the closures of Z 2 orbits in 

Description of 

Let Ap, At,  A = /kp x At denote the affine Bruhat-Tits buildings associ- 

ated with PGL2(Qp), PGL2(Q~), G = PGL2(Qp) x PGL2(Qt) respectively (see 
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[B-T1,2], [Sro], [ao] for general description of (affine) buildings and [Ser] for a 

description of the affine buildings associated with the groups PGL2(k) where k is 

a nonarchimedean local field). Recall that Ap (resp. a e )  is a p + 1 (resp. g + 1) 

regular tree. Let rp: A --* Ap, re: A --~ Ae be the corresponding projections. 

Since F is a torsion free lattice it acts freely on A. The quotient Y -- F \ A  is a 

two dimensional complex whose faces (cells), like those of A, are two dimensional 

squares. Note that  the 1-skeleton of A is made of edges of two types: 

(i) "Vertical edges" which project to an edge in AB and a vertex in Ae. 

(ii) "Horizontal edges" which project to an edge in Ae and a vertex in Ap. 

Since the action of F preserves these types, the edges of Y may also be associated 

with these two types. Let .A < A be the apartment of A on which A acts by 

translations (via M \ A  ~_ Z2). Let ~ : {~: A --. YI ~ admissible}, where a map 

between two complexes is called admiss ib le  if it is locally an immersion and 

preserves the type (horizontal or vertical) of each edge. (Recall that ¢(Fg) = 

7r o glA, see [Mol].) It is convenient to think of the collection of vertices, edges 

and faces of Y as a finite set of colors (or labels). A map ~ E ~ is a coloring 

(labelling) of the apartment A by these colors satisfying certain local conditions 

determined by combinatorial structure of Y. The covering map 7r: A --~ Y gives 

a coloring of A. Notice that a face of Y is determined by its edges and actually 

already by any two non-parallel edges of it. It follows that an element w C ~ is 

determined by its restriction to a pair of a vertical and a horizontal lines in ,4. 

We examine more closely the way the coloring of a horizontal and a vertical 

line determines the whole coloring. The roles of "vertical" and "horizontal", "p" 

and "g" may be exchanged in what follows. 

Fix a vertex o = (Op, oe) in A. Let 6 = 7r(o) be its image in Y. Denote 

I'p = {7 • r l  7oe = oe},  

r e  = {7 • r l  7op = oF}.  

Let R C A be a rectangle with vertices a, b, c, d as in Figure 1. 

Let ~: R --* Y be an admissible map. Assume p(a) = ~(b) = ~o(c) = ~(d) = 6. 

Hence the restriction of ~ to each of the (directed) sides of R gives an element 

of r l (Y) .  Note that  ~rl(Y) may be viewed as the group of deck transformations 

of ~r:/~ --* Y which is naturally identified with F. We have 

7oh = ~l[o,b] • r e ,  7~e = ~lI~,d] • r e ,  7 ~  = ~l[~,~l • Fp, 7 b d  = ~l[b,dl • Fp. 
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c d 

a b 

Figure 1 

Since they  bound a rectangle it follows tha t  7 = %bTba = %~%d. Lift ~ to 

9~: R --* /~ s.t. 93(a) = o. The  vertex ~(d) is the image of o under 7. As 

o = (op, oe) and %d = F~, we have 

~abTbdOp : ')'acTcdOp -~- ~acOp. 

Notice tha t  %dOp = ~r v o (~bd(d) where Cbd: [b, d] ~ /~ is the lifting of Cbd = 

~ol[b,d]: [b,d] --~ Y s.t. (bbd(b) = O. 7~cOp = ~rpO(p~c(c) where Ca~: [a,c] --* /~ is 

the lifting of Cac = ~][~,~]: [a, c] --* Y s.t. Ca~(a) = o. Thus we have shown: 

LEMMA 1: Let  R = [a, b, d, c] C A be a rectangle, ~: R ~ Y an admissible map. 

Assume ~(a) = ~(b) = ~(c) = ~(d) = 6. Let  %b • Fe C F be the demen t  

corresponding to ~[[a,bl. Let  ¢'~:  [a, c] --* Ap, ¢~a: [b, d] --+ Ap  be the two paths  

based at  op, ¢ ' c  = ~r v o ¢ ~ ,  ¢~d = zrv o Cba where Cac: [a, c] ~ A,  Cbd: [b, d] --* A 

are the liftings of  ~[[~,~] and T[[b,d] s.t. ~b~c(a) = o, (bbd(b) = O, respectively. 
¢ , ,  , Then the path  ¢'a~ is the image of  the path  ¢~bd under 7~b. Notice that  Cbd 

determines the coloring of  the sides [a, c], [b, d] respectively. 

LEMMA 2: 

(i) Let  R '  = [a, b, d', c'] C A be a rectangle. Let  ~v': R --+ Y be an admissible 

map  s.t. ~ '(a)  = ~'(b) = O. Let  %b • Fe C F be the demen t  correspond- 

' [a, c'] Ap, Cbd,. [b, d'] be the two paths ing to ~ ][~,b]. Let  ' • --+ i . 

in A v corresponding to the coloring of  the sides of  R based at op, as in 

Lemma 1. Then ¢'~, is the image of  ¢'bd' under Tab. 

(ii) Let  R"  be an in ,h ire  hal f  str ip as in Figure 2. Let  ~": R"  ~ Y be 

an admissible map s.t. ~" (a )  = ~"(b) = ~. Let  %b • Fe C F be the 
" " ¢'b' element corresponding to ~ [[a,b]" Let  Ca, be the paths  in A v based 
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at op corresponding to the colorings of  the sides of R"  above a and b 

respectively. Then ¢~ is the image of  ¢~' under "~ab" 

Proo~ Assertion (ii) follows from (i) by looking at bigger and bigger sub- 

rectangles. Assertion (i) will follow from Lemma 1 if we can find a rectangle 

R = [a,b,d,c] D R'  and an admissible map ~o: R ~ Y s.t. ~oiR, = ~o I and 

~o(a) = ~o(b) = ~o(c) = ~o(d) = 6. In [Mol] we proved that  the action of 

{(n,0)[ n E N} (the vertical shift) on ~ is topologically transitive (we remark 

here only that  it follows from the fact that by the Howe-More theorem the sys- 

tem ( r \ G , / 3 , ~ , A )  is mixing). Hence C~' N C~'(n,0) ¢ • for some n e N which 
f '  R '  c~ r P n  f '  R ~ may be chosen to be larger than the height of R ~. Choose some w E ,.~ . . . . .  ~,,. 

Let R = [a, b, d, c] be the rectangle in A containing R' of height n. Let ~o = w ]R 

then R, ~o satisfies the required properties and (i) follows from Lemma 1. I 

a 

Figure 2 

LEMMA 3: Let 9' = ('}'p, ~'~) E F ~, ¢ e. Then both "yp and "yt are nontrivial. 

Proo~ Assume for example 7p = e. Then 7e ~ e. The projection of F in 

PGL2(Qt) is dense since F is irreducible. It follows that the group generated by 

the conjugates of 7 by the elements of F has a dense projection in PGL2 (Q~) while 

its projection in PGL2(Qp) is the trivial element. As this group is contained in 

the discrete group F we have a contradiction. I 

LEMMA 4: Let x E F \ G  be s.t. x A  is not compact and x A  ~ y s.t. yA  = y A  is 

a compact orbit. Then there exists z E x A  such that there is a half plane T l c  ,4 
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so that the corresponding tilings satisfy (I)(y)[u = (I)(z)l~ and (I)(y)[E ¢ (I)(z)[E 

where E E ,4 is an edge perpendicular to the boundary of  T-I touching it and not 

contained in ~ .  

Proof: Recall that yA  is a compact A orbit if and only if (I)(y) is a periodic 

coloring of ,4. The assumption that y E x A  implies that (I)(y) E (I)(x)Z 2. This 

means that we can find in (I)(x) larger and larger areas which are colored in 

the same way as (I)(y) up to translation. Notice that a maximal connected region 

where (I)(y) and a translate of (I)(x) have the same coloring is a rectangle, possibly 

stretching to infinity in some or all directions. This follows from the observation 

that  the coloring of two perpendicular edges of a square determines the coloring 

of the other edges (see also [Mol]). Since by the assumptions (I)(x) ¢ (I)(y) it 

follows using the compactness of the space fl and the discreteness of the set of 

"colors" that we can find w E (I)(x)Z 2 which coincides with (I)(y) on a half plane 

7-/but not on the squares touching the boundary of 7-/. Let z E x A  be such that 

= m 

Fix x E F \ G  s.t. x A  is not compact and x A  contains a compact A orbit 

y A  = yA.  Let z E x A  be as in Lemma 4 and assume without loss of generality 

that  O(z) and O(y) coincide on a half plane 7-/bounded above by a horizontal 

line 0~/. 

LEMMA 5: Let d be a horizontal period of  ~(y) .  Let {ci[ i E N U {0}} be a 

sequence of  points on 07-I at distance d from one another going to the left. The 

mapping <I)(z): A --* Y maps all of  them to a point 6 = 7r(o), o = (Op, oe) E A .  

Let £i,  i > 0 be a vertical ray in A going up from ci. Let ~i: £i -* A be the 

lifting of  ~(z)[c,:  ~, -~ Y s.t. ~i(ci) = o. Let ~bi = 7rp o ~i: ~ --~ Ap be the 

corresponding path in Ap based at op. Identify each ¢i with a point [¢i] E OAp 

in the boundary of  the tree A v. Then {[¢~]I / -> O} contains an open set. 

Proo f  Let V E F t  C G be the element corresponding to the map 

¢(z) l lc ,÷ , ,c , l :  c,] v .  

(Notice that  it doesn't depend on i.) By Lemma 2, ¢i+1 = "y¢i. Actually 

¢i+1 = 7¢~ where ~ is the component of "y in PGL2(Qp). We can by conjugating 

the whole structure assume that the stabilizer of op in PGL2(Qp) is PGL2(Zp). 

Thus ~ E PGL2(Zv), ¢i  = ~il~O" 

We shall use the following: 
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LEMMA 6: Let e # ~/ E PGL2(Zp) be of infinite order. Let ¢o be a geodesic path 

from op E/xp  to the boundary O/x v. Assume that ¢o is not stabilized any power 

of ~ then {~n[¢0][ n • N} C 0Ap contains an open set. 

Proof: Since PGL2(Zv) is a virtually p r o p  group it follows that  by replacing 

by some power of it we can assume that  the image of ~ under any homomorphism 

to a finite group has an order which is a power of p. This implies that if some 

power of ~ stabilizes an edge in Ap then it acts on the p edges neighbouring to 

it at one vertex either as the identity permutation or as a full cycle of order p. 

Denote the vertices along the path ¢o by (Co, ax, a2 , . . .  ). Replacing again ~ by 

some power of it we can assume that ~ stabilizes the first k edges of the path ¢o, 

k _> 2, and move the edge (ak, ak+l). We shall use the following: 

CLAIM: Let a = ~r and bo = o v, bl, b 2 , . . . ,  bin, bin+l, m > 3 be a geodesic path 

such that  abi = bi for 0 < i < m - 1 but abm # b m  then (~Pbm = bm and a p acts 

on the p edges from bm different from (bin-l, bin) as a cycle for order p. 

Proof of Claim: a being a power of ~ acts on the p edges based at bin-1 different 

from (bin-2, bin-l) as a full cycle of order p. Hence aPbm = bm. Conjugating by 

an appropriate element of PGL2 (Qp) we can assume that  Stab b,,-2 = PGL2(Zp) 

and bm -- (p~0)0 PGL2(Zp), bm+l -- (P: 0)1 PGL2(Zp)(recal l  that the vertices 

of Ap may be thought of as cosets of the maximal compact subgroup), a acts 

trivially on the p +  1 vertices around b,~-2 (since it stabilizes two of them it can't  

have a p-cycle there). It follows that there is a matrix A • GL2(Zp) representing 

a so that  A = I + pB, B = (bij) • M2(Zp) and since abm # bm we have 

(' + °1) 

A p = (I + pB) v = I + p2B + p3C, for some C • M2(Zv), corresponds to a p. 

(P: 7) GL2(Zp) ~ (P: ~ ) GL2(Zp), i.e. o~Pbm.bl ~ bm+l. It follows that A p It 

follows that  a p acts on the p edges {(bm,x)l x ~ bin-l} as a cycle of order p. 
| 

Let Yk+l, yk+2,. . . ,  Ym be vertices s.t. a0, a l , . . . ,  ak, Yk+l, • •. ,  ym is a geodesic 

path. By the action of an appropriate power ~i 0 _< i < p we can move the path 

~0 to a path starting as coal . . .  ak, Yk+l. Then by the above claim we can act on 

it by s o m e  ~[PJ SO that its initial segment is a0, a l , . . . ,  ak, Yk+l, Yk+2. Repeated 
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use of the claim gives eventually a power ~n which maps the path ¢0 to a path 

~n¢o whose initial segment is ao, al . . . . .  Yk+l , . . . ,Ym.  Hence {~'~[¢o]l n E N} 

contains the open set of all the points in the boundary such that a geodesic path 

to them from Op begins as ao, a l , . . . ,  ak. I 

To complete the proof of Lemma 5 we have to verify that the path ¢0 is not 

stabilized by any nontrivial power of 9- By Lemma 3, ~i ~ e for any i > 1. 

Since qi E PGL2(Qp) it can stabilize at most two points in the boundary c9/kp. 

Let ~1, ~2 be the paths in/kp determined by the coloring induced by ¢(y)  of the 

two vertical rays going up and down based at the point co (notation as in the 

statement of the lemma). Since ¢(y)  is periodic, it follows that both of them are 

stabilized by qi. They are distinct because ¢(y)  is an admissible coloring. Since 

¢0 corresponds to a different point of the boundary OAp it is not stabilized by 

~ ,  i _> 1. I 

Proof of Theorem 1: If the orbit x A  is closed there is nothing to prove. Assume 

that  x A  is not closed and that its closure contains a compact A-orbit yA. By 

Lemma 4 there exists an element z E xA  be as in the assumptions of Lemma 5. 

Lemma 5 asserts that  (I)(z) colors a certain horizontal line 1: in ,4 in a periodic 

pattern of period d and that if we look at the collection of vertical segments 

of any finite length based at a sequence of points Co, Cl,C2,... equispaced at 

distances sd from one another on ~ (for some fixed s) then (I)(z) colors them in 

all possible ways extending a fixed coloring of the first k edges. Let ~: R ~ Y be 

an admissible coloring of a u x v rectangle in R C ,4, whose lower right corner 

can be assumed, w.l.o.g., to be co. Let C R be the corresponding cylindrical set 

in f~. To show that  x A  is dense it is enough to show that some translate of (I)(z) 

lies in C~. Let M C ,4 be k x v rectangle such that its lower right corner is the 

point Co, see Figure 3. Denote/3 = (I)(z)iM. 

Let C y  be the corresponding cylindrical set. As mentioned earlier (see the 

proof of Lemma 2 and [Moll) the action of {(n,0)l n E N} (the vertical shift) 

on ~ is topologically transitive. Hence there is some n E N n > k so that 

C~ 4 NC~(n,O) # 0. Fix some Wo E C~ 4 MC~(n,0).  Look at the coloring wo 

induces on a vertical segment of length u + n based at Co (see Figure 4). As 

observed at the beginning of the proof there exist some cj j E N such that  (I)(z) 

induces the same coloring on the vertical segment of length u + n based at cj. 

Combined with the fact that the horizontal segment of length v to the left of 
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cj is colored by (I)(z) in the same way as wo colors the horizontal segment of 

length v to the left of co and that  these two colorings determines the coloring of 

a (u + n) x v rectangle it follows that  there is a u × v rectangle in ,,4 which is 

colored by (I)(z) as ~o colors R. | 

M 
q q c, c o 

Figure 3 

I R 

J M 
c~ 6 co 

Figure 4 

Div i s ib i l i t y  

The lattice F < G = PGL2 (Qp) × PGL2(Qe) acts on the building A of G. Assume 

that  F is torsion free (hence the action is free). We want to define a notion of 

"divisibility" or "factorization" in F. 

Definition: 

(1) Fix a vertex o E A. We will say that  7 = 7~7" is a factorization 

with respect to o if for every gallery cO, Cl, . . . ,Cd connecting o with 
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(2) 

"y'o and any gallery Do, D1 . . . .  , D,~ connecting o with ~,"o, the sequence 

Co, C l , . . . ,  ca, 7'Do, 7 ' D 1 , . . . ,  ~/'Dm may be completed (by adding cham- 

bers between cd and "ylDo) to form a gallery connecting o and ~/o. 

(Remark: In the present case of the building A = Ap x Ae one needs 

only to add at most one more chamber (square), see Figure 5, however the 

definition makes sense also for groups acting on more general buildings 

where one may need to add more chambers.) 

We say that x E F divides y E F with respect to o if there exist u, v E F 

so that  both ux  and (ux)v  = y are factorizations. 

I Co Icl 

'Y" Do I 
C~ 

Figure 5 

Remark:  By abuse of notation we will usually just say "factorization" ("di- 

vides") instead of "factorization (divides) w.r.t, o". The motivation for this 

definition is the following example: Let p , / =  1 (mod 4) be two distinct primes. 

Let F = {x  = zo + z l i  + x 2 j  + x3k  I x ~ 1 (mod 2) xi E Z lxl 2 = preS}. 

is a semigroup, which has natural notions of "factorization" and "divisibil- 

ity". On the other hand F may be used to construct an irreducible lattice 

F < G = PGL~(Qp) x PGL2(Qe) as follows: Let ~p,~e be roots of - 1  in Qp,Qe 

respectively. Define a map ~: F ~ G by 

- x ~  + x3~, x0 - x ~ ,  ] '  - z 2  + z 3 ~  z0 - z l~e ] ]" 

Let F = ~(F). (note that F _ F/{±prgS}.) We claim that for this lattice the 

notions of factorization and division as defined above coincide with the natural 

ones. The verification of this involves identifying the 1-skeleton of A with the 

Cayley graph of F with respect to a (natural) set of generators which are the 
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images under ~ of the "prime" factors (generators) of F. For more details of this 

identification we refer to [L], [Moll, [Mo2]. | 

We re turn  to the general case. Let  o = (op, oe) E A 5 = 7r(o) be fixed as above. 

There  is a one to one correspondence between elements of F and admissible maps 

~: R -~ Y of finite rectangles R = [a, b, d, c] c .4 (which may be degenerate,  i.e. 

of 0 width or height) such tha t  ~(a)  = 6 = ~(d).  Given such a map  ~: R --~ Y 

there exists a unique lifting ~3: R ~ A of ~ such tha t  ~(a)  = o. The  element 

F ( ~ )  E F, corresponding to ~ is the unique element of F mapping o to ~(d).  

Conversely given "r E F let Conv[o, "yo] C A be the convex hull of o, "yo, i.e. the 

intersection of all the  apar tments  containing o and "yo. Cony[o, 70] is isometric 

to a rectangle R C A and we obtain an admissible map F - l ( " / ) :  R --* Y whose 

lift to A based at o maps R to Cony[o, "yo]. 

LEMMA 7: Let ~1, "Y2 E F "[1 divides "Y2 if and only i f  the corresponding admissible 

maps ~1 = F-1(71) :  R1 --* Y, ~2 = F-1(~2) :  R2 ~ Y are such that there is 

a rectangle R' 1 C R2 isometric to Rx so that qo21R'~ coincides with q01 when we 

identify R~ and R1 (in other words : "~1 appears in ~2"). 

Proof'. Assume there exists a rectangle R~ C R2 as in the lemma. Let  the 

rectangles be R2 = [a, b, d, c] R~ = [e, f ,  h, g] (see Figure 6). 

c d 

R2 

g 

R; 
h 

I, 
Figure 6 

Let  7 '  E F be the element corresponding to ~2 restr icted to the rectangle 

whose b o t t o m  left corner is a and top right corner is e. Let  ")," E F be the element 

corresponding to the rectangle whose b o t t o m  left corner is h and top right corner 

is d. It  follows tha t  "Y2 = "Y'~/I~/" is a factorization. Conversely assume ~/1 divides 

"Y2, i.e. 3~/', "y" E F s.t. "Y2 = "Y"h~" is a factorization. It  follows tha t  the vertices 

o, ,/'0, "y',/lo, 7"yl"y"o = 72o lie along a gallery connecting o and "y20. Hence the 
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rectangle Conv[7'o,  'r''rlO] is contained in the rectangle Conv[o, 72o], moreover  

it is the image under 7 '  of the rectangle Conv[o,'r10]. It  follows tha t  the maps  

ggl = F - l ( 7 1 ) :  R1 --+ Y, ~o2 = F - l ( ' r 2 ) :  R2 ---+ Y, are as in the lemma.  | 

A subshift  E of ~ (i.e., a closed shift invariant subset)  is character ized by the 

collection of all the finite "windows" one sees in the elements of E. By this 

we mean  the restr ict ions of any element of Ft to any finite rectangle ignoring the 

posi t ion (up to t ranslat ion)  of the rectangle. Conversely a collection of arbi t rar i ly  

large windows, defines a subshift  of g~ consisting of the elements w E ~ so tha t  

the restr ict ion of w to any finite rectangle appears  in one of the  given windows. 

LEMMA 8: Let C = {'ril i E N} be given. Associated with each "ri is an ad- 

missible m a p  F - l ( ' r i ) :  R i ---+ Y ("a window"). Assume that the rectangles R~ 

become arbitrarily large (in both dimensions). Let E = E(C) C ~2 be the subshift 

corresponding to this collection of windows. Then E = g~ i f  and only i f  for every 

'r E F there exists some 'ri E C such that "r divides "ri. 

Prook If  E = fl then for every 'r E F there exists some 'ri C C such tha t  F - l ( ' r )  

appears  in F - l ( ' ~ i ) .  By L e m m a  7 this implies tha t  'r divides 'ri. Conversely if 

for every 'r E F there exist a "Yi E C divisible by it then every admissible m a p  

~o: R --+ Y of a rectangle  R appears  in some F - l ( ' r~ )  and ~t = E. I 

From Theo rem 1, or ra ther  its proof,  it follows tha t  

COROLLARY 1: f i g  = {'ri] i E N} is such that there exists an admissible m a p  

~: Q --+ Y of  a quadrant Q of A such that any finite window in ~o appears  in some 

F-~('ri) and such that, w.l.o.g., the restriction of ~ the to horizontal boundary 

is periodic and the whole map is not. Then for every "r E F there is some 'ri C C 

divisible by % 

For 7 E F let l{7}{o = Dis t (o , ' ro)  where the distance is measured  in the 1- 

skeleton graph  of A. Let {[7[{o~ = Dis t (%,  7%),  {{'r[{oe = Dist(oe, ' roe) where the 

distances are measured  in the corresponding trees. Notice tha t  II'rllo = []'r{Io, + 

IIHIo~ and tha t  7 = 'rl'r2 is a factor izat ion (w.r.t. o) iff II'rllo -- Ib ,  llo + Ibdlo.  

COROLLARY 2: Let e ~ a C P and % E F n C N be such that 

(1) lla'~'rnllo,, .--> oc, ]lo~"%l}o, ~ oo, 

(2) I[~n'rnl[o > II~nilo+lb~llo-C for some constant C (bounded cancellation). 
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Then either the subshift  de termined by the collection {F- l (~nT~)}  consists only 

o f  one (up to s y m m e t r y )  periodic orbit (which is uniquely de termined by a),  or 

[or any x E F there is n C N so that x divides (~'~'~,~. 

Proof." We have associated with any ~ E F a map F-1(~3) from a finite rectangle 

in A to Y. Consider the maps F - ' ( a n ) ,  since a ~ e and F is torsion free it 

follows that  as n becomes large the restriction of F-l(c~ n) to some segments is 

a longer and longer repetition of some fixed pattern.  Assumption 2 guarantees 

that  there is little cancelation when we multiply c~ n by 7,~. Hence as n tends to 

c~ there are longer and longer segments (horizontal or vertical) in .4 such that  

the restriction of F -1 (a~3,n) to them is a long repetition of some fixed pat tern  

p: I --+ Y. Together with assumption 1 this implies that  either we can find an 

admissible map ~: Q -* Y of a quadrant as in Corollary 1 which implies that  

for every x E F there exists some a ~ , ~  divisible by x or that  the subshift E 

corresponding to {F - l ( a~7~) l  n E N} consists of one periodic point. To see the 

uniqueness of this periodic orbit observe that  if a E E then there is a line t: C .4 

so that  alL: £ ~ Y is made of infinite repetition of the map p. Assume w.l.o.g. 

£ is horizontal. Let A4 be a vertical line in .4 intersecting £ at a vertex Z. Lift 

a l ~ : A , l - - +  Y t o a l ~ :  A 4 - *  ~ so that  a ( Z )  = d.  Let 8 C F~ be the element 

of ~, corresponding to the period of a in the direction of £ based at Z (which 

by choosing £ and Z can be assumed to be p). It  follows that  (see Lemma 2) 

~lz4(A/t) is an infinite line in Ap stabilized pointwise by 8. Since 8 ~ e this line 

is uniquely determined by 8, hence by a, and it follows that  the periodic point 

is determined by a (up to (reflection) symmetry) .  | 

To illustrate the arithmetical meaning of this corollary we state a special case 

of it for the semigroup of quaternions mentioned above: 

COROLLARY 3: Let  x = Xo + x l i  + x2 j  + X3 k, y -- Yo + yl i  + Y2j + Y3 ]c be 

integral quaternions s.t. x0, xl ,  x2, x3 as well as Yo, Yl, Y2, Y3 are relatively pr ime 

ix12 = p~ ]y12 = ~8 r , s  >_ 1. Then either xy  = +yx  or for any quaternion 

z = Zo + zl i  + z2j  + z3k s.t. z0, zl, z2, z3 are relatively pr ime  and Iz] 2 = pk£m. 

There exists some n s.t. z divides x'~y ~, i.e., x~y ~ = uzv  for some integral 

quaternions u, v. 

We conclude by remarking that  Conjecture 1 is actually equivalent to the 

following strengthening of Corollary 2. 
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CONJECTURE 2: Let 7n E F n • N be such that l[Tnllop, II nllo, ~ then either 

every x • F divides some 7,~ or there are finitely many rank 2 abelian subgroups 

o f f  and finitely many cosets of them which contain {~/~[ n • N}. 

Proof of the equivalence: The preceding discussion shows that every x • F 

divides some 7n iff the subshift E corresponding to {F--l('Tn)} is equal to f/. 

Conjecture 1 says that E = f~ unless it contains only periodic points. It is easily 

verified that a closed shift invariant set containing only periodic points must 

be finite. Hence conjecture 1 implies that if there is x • F not dividing any 

7~ then the subshift E defined by {F- l (Tn)}  consists of finitely many periodic 

points. This implies that {%1 n • N} is contained in a union of finitely many 

cosets of rank 2 abelian groups. (Notice that each periodic point defines finitely 

many, conjugate, rank 2 abelian subgroups of F, see [Moll.) To see the opposite 

implication, let w E f t  be non periodic. Fix 6 • Y a vertex which has infinitely 

many preimages, under the map w: A ~ Y, in A along some diagonal ray. Denote 

these, ordered, by a0,al ,  a2 , . . ,  and let 7n = F-l(WIConv[~0,~l) be the element 

of F corresponding to the rectangle with opposite corners ao, a~. Since w is non 

periodic, the diagonal ray may be chosen so that  {Tnl n • N} are not contained 

a finite union of cosets of abelian subgroups and Ill.lip, Ibnlle --' ~ .  Hence by 

Conjecture 2 it follows 

has a dense orbit in 12. 
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